Close Menu
    Trending
    • Enabling small language models to solve complex reasoning tasks | MIT News
    • New method enables small language models to solve complex reasoning tasks | MIT News
    • New MIT program to train military leaders for the AI age | MIT News
    • The Machine Learning “Advent Calendar” Day 12: Logistic Regression in Excel
    • Decentralized Computation: The Hidden Principle Behind Deep Learning
    • AI Blamed for Job Cuts and There’s Bigger Disruption Ahead
    • New Research Reveals Parents Feel Unprepared to Help Kids with AI
    • Pope Warns of AI’s Impact on Society and Human Dignity
    ProfitlyAI
    • Home
    • Latest News
    • AI Technology
    • Latest AI Innovations
    • AI Tools & Technologies
    • Artificial Intelligence
    ProfitlyAI
    Home » Microsoft-studie avslöjar att AI-modeller har svårt med felsökning av kod
    Latest AI Innovations

    Microsoft-studie avslöjar att AI-modeller har svårt med felsökning av kod

    ProfitlyAIBy ProfitlyAIApril 13, 2025No Comments2 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    En ny studie från Microsoft visar att AI-modeller fortfarande har betydande utmaningar när det kommer until att felsöka kod. Trots att dessa modeller har blivit allt mer avancerade och kan skriva fungerande kod från scratch, så är felsökning en helt annan sak. Det är som att de kan bygga ett hus males inte hitta en läckande kran.

    Studien, som publicerades på Microsofts forskningsblogg, introducerar en miljö kallad Debug Gymnasium. Här tränas AI-modeller att identifiera och åtgärda buggar på samma sätt som mänskliga programmerare gör. Males resultaten visar att det finns en tydlig skillnad mellan hur människor och AI närmar sig problemet. Människor använder logik, instinct och erfarenhet, medan AI-modeller förlitar sig på mönsterigenkänning och statistiska sannolikheter.

    Imponerande males otillräckliga resultat

    I sin studie testade Microsoft-forskarna nio olika AI-modeller på SWE-bench Lite, ett populärt riktmärke för felsökning. Resultaten var blandade:

    • Claude 3.7 Sonnet presterade bäst med en framgångsfrekvens på 48,4%
    • OpenAI:s o1 och o3-mini visade lägre framgångsfrekvenser på 30,2% respektive 22,1%

    Även med tillgång until felsökningsverktyg löste den enkla agenten sällan mer än hälften av problemuppgifterna. Microsoft-forskarna tillskriver den suboptimala prestandan until bristen på knowledge som representerar sekventiellt beslutsfattande.

    Varför AI kämpar med felsökning: Microsoft-forskarna förklarar utmaningarna ”Vi tror att detta beror på bristen på knowledge som representerar sekventiellt beslutsfattande beteende (t.ex. felsökningsspår) i den nuvarande LLM-träningskorpusen”.

    Males den betydande prestandaförbättringen när modellerna får tillgång until felsökningsverktyg visar att detta är en lovande forskningsriktning. Dagens AI-kodningsverktyg kan öka produktiviteten och utmärka sig i att föreslå lösningar för buggar baserat på tillgänglig kod och felmeddelanden. Males until skillnad från mänskliga utvecklare söker dessa verktyg inte efter ytterligare info när lösningar misslyckas, vilket lämnar vissa buggar olösta.

    Mer data:

    1. Microsoft Research Blog: Debug Gym
    2. Microsoft Research
    3. debug-gym – https://microsoft.github.io/debug-gym



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleTransformer Lab: Öppen källkods-plattform förenklar arbetet med AI-språkmodeller
    Next Article ChatGPT får långtidsminne – kommer nu ihåg alla dina konversationer
    ProfitlyAI
    • Website

    Related Posts

    Latest AI Innovations

    Differential Privacy vs. Encryption: Securing AI for Data Anonymization

    December 5, 2025
    Latest AI Innovations

    Will AI Slop Kill the Creator Economy? How to Survive as a Creator

    December 5, 2025
    Latest AI Innovations

    Why AI is the New Social Media: A Shift from Connection to Personalization

    December 5, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Making AI-generated code more accurate in any language | MIT News

    April 18, 2025

    Claude AI integreras med Google Workspace

    April 16, 2025

    DeepWiki omvandlar ditt GitHub-repo till en interaktiv kunskapsbas

    April 28, 2025

    Plotly’s AI Tools Are Redefining Data Science Workflows 

    April 15, 2025

    Shaip Democratizes Access to Critical Healthcare Data Through Partnership with Databricks Marketplace

    April 5, 2025
    Categories
    • AI Technology
    • AI Tools & Technologies
    • Artificial Intelligence
    • Latest AI Innovations
    • Latest News
    Most Popular

    ChatGPT-tips för att spara pengar vid julköpen

    November 4, 2025

    Meta’s AI Chatbots Exposed: Caught Sexting Minors Using Celebrity Voices

    April 29, 2025

    Maximizing AI/ML Model Performance with PyTorch Compilation

    August 18, 2025
    Our Picks

    Enabling small language models to solve complex reasoning tasks | MIT News

    December 12, 2025

    New method enables small language models to solve complex reasoning tasks | MIT News

    December 12, 2025

    New MIT program to train military leaders for the AI age | MIT News

    December 12, 2025
    Categories
    • AI Technology
    • AI Tools & Technologies
    • Artificial Intelligence
    • Latest AI Innovations
    • Latest News
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2025 ProfitlyAI All Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.