Close Menu
    Trending
    • MIT scientists debut a generative AI model that could create molecules addressing hard-to-treat diseases | MIT News
    • Why CrewAI’s Manager-Worker Architecture Fails — and How to Fix It
    • How to Implement Three Use Cases for the New Calendar-Based Time Intelligence
    • Ten Lessons of Building LLM Applications for Engineers
    • How to Create Professional Articles with LaTeX in Cursor
    • LLM Benchmarking, Reimagined: Put Human Judgment Back In
    • How artificial intelligence can help achieve a clean energy future | MIT News
    • How to Implement Randomization with the Python Random Module
    ProfitlyAI
    • Home
    • Latest News
    • AI Technology
    • Latest AI Innovations
    • AI Tools & Technologies
    • Artificial Intelligence
    ProfitlyAI
    Home » The Absolute Beginner’s Guide to Pandas DataFrames
    Artificial Intelligence

    The Absolute Beginner’s Guide to Pandas DataFrames

    ProfitlyAIBy ProfitlyAINovember 17, 2025No Comments6 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    background, studying Python for knowledge evaluation has been a bit difficult. The syntax is less complicated — true. Nevertheless, the language and terminology are utterly completely different. In SQL, you’ll need to work together with databases, tables and columns. In Python, nevertheless, for knowledge evaluation, your bread and butter goes to be knowledge buildings.

    Information buildings in Python are like knowledge storage objects. Python consists of a number of built-in knowledge buildings, comparable to lists, tuples, units, and dictionaries. All these are used to retailer and manipulate knowledge. Some are mutable (lists) and a few should not (tuples). To be taught extra about Python knowledge buildings, I extremely advocate studying the ebook “Python for Information Evaluation” by Wes McKinney. I simply began studying it, and I believe it’s stellar.

    On this article, I’m going to stroll you thru what a DataFrame is in Pandas and tips on how to create one step-by-step.

    Perceive Array fundamentals

    There’s a library in Python referred to as NumPy; you might have heard of it. It’s principally used for mathematical and numerical computations. One of many options it presents is the power to create arrays. You may be questioning. What the heck is an Array?

    An array is just like a listing, besides it solely shops values of the identical knowledge kind. Lists, nevertheless, can retailer values of various knowledge sorts (int, textual content, boolean, and so on). Right here’s an instance of a listing

    my_list = [1, “hello”, 3.14, True]

    Lists are additionally mutable. In different phrases, you possibly can add and take away parts.

    Again to arrays. In Numpy, Arrays could be multidimensional — that is referred to as ndarrays (N-dimensional arrays). For example, let’s import the Numpy library in Python.

    import numpy as np

    To create a primary array in Numpy, we use the np.array() operate. On this operate, our array is saved.

    arr = np.array([1, 2, 3, 4, 5])
    arr

    Right here’s the consequence:

    array([1, 2, 3, 4, 5])

    To examine the information kind.

    kind(arr)

    We’ll get the information kind.

    numpy.ndarray

    The cool factor about arrays is you can carry out mathematical calculations on them. For example

    arr*2

    The consequence:

    array([ 2, 4, 6, 8, 10])

    Fairly cool, proper?

    Now that the fundamentals of arrays in Numpy. Let’s dig deeper into N-dimensional arrays.

    The array you see above is a 1-dimensional (1D) array. Also referred to as vector arrays, 1D arrays encompass a sequence of values. Like so, [1,2,3,4,5]

    2-dimensional arrays (Matrix) can retailer 1D arrays because the values. Much like rows of a desk in SQL, every 1D array is like one row of information. The output is sort of a grid of values. For example:

    import numpy as np
    arr = np.array([[1, 2, 3], [4, 5, 6]])
    arr

    Output:

    [[1 2 3]
    [4 5 6]]

    third-dimensional arrays (Tensors) can retailer 2D arrays (matrices). For example,

    import numpy as np
    arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
    arr

    Output:

    [[[1 2 3]
    [4 5 6]]
    [[1 2 3]
    [4 5 6]]]

    An array can have an infinite variety of dimensions, relying on the quantity of information you wish to retailer.

    Making a dataframe from an array

    Now that you just’ve gotten the gist about Arrays. Let’s create a DataFrame from one.

    First, we’ll need to import the pandas and NumPy libraries

    import pandas as pd
    import numpy as np

    Subsequent, create our Array:

    knowledge = np.array([[1, 4], [2, 5], [3, 6]])

    Right here, I’ve created a 2D Array. Pandas DataFrame can solely retailer 1D and 2D arrays. For those who attempt to cross in a 3D Array, you’ll get an error.

    Now that we’ve acquired our Array. Let’s cross it into our DataFrame. To create a DataFrame, use the pd.DataFrame() operate.

    # creating the DataFrame
    df = pd.DataFrame(knowledge)
    
    # displaying the DataFrame
    df

    Output

    0 1
    0 1 4
    1 2 5
    2 3 6

    Wanting good thus far. Nevertheless it wants a bit formatting:

    # making a dataframe
    df = pd.DataFrame(knowledge, index=['row1', 'row2', 'row3'],
    columns=['col1', 'col2'])
    
    # displaying the dataframe
    df

    Output

    col1 col2
    row1 1 4
    row2 2 5
    row3 3 6

    Now that’s higher. All I did was rename the rows utilizing the index attribute and the columns utilizing the columns attribute.

    And there you go, you have got your DataFrame. It’s that easy. Let’s discover some extra useful methods to create a DataFrame.

    Making a DataFrame from a dictionary

    One of many built-in knowledge buildings Python presents is dictionaries. Principally, dictionaries are used to retailer key-value pairs, the place all keys have to be distinctive and immutable. It’s represented by curly brackets {}. Right here’s an instance of a dictionary:

    dict = {"title": "John", "age": 30}

    Right here, the keys are title and age, and the values are Alice and 30. Easy as that. Now, let’s create a DataFrame from a dictionary.

    names = ["John", "David", "Jane", "Mary"]
    age = [30, 27, 35, 23]

    First, I created a listing to retailer a number of names and ages:

    dict_names = {'Names': names, 'Age': age}

    Subsequent, I saved all of the values in a dictionary and created keys for Names and Age.

    # Creating the dataframe
    df_names = pd.DataFrame(dict_names)
    df_names

    Above, we have now our DataFrame storing the dictionary we created. Right here’s the output beneath:

    Names Age
    0 John 30
    1 David 27
    2 Jane 35
    3 Mary 23

    And there we go, we have now a DataFrame created from a dictionary.

    Making a DataFrame from a CSV file

    That is in all probability the tactic you’ll be utilizing probably the most. It’s frequent observe to learn CSV information in pandas when making an attempt to do knowledge evaluation. Much like the way you open spreadsheets in Excel or import knowledge to SQL. In Python, you learn CSVs through the use of the read_csv() operate. Right here’s an instance:

    # studying the csv file
    df_exams = pd.read_csv('StudentsPerformance.csv')

    In some instances, you’ll have to repeat the file path and paste it as:

    pd.read_csv(“C:datasuppliers lists — Sheet1.csv”)

    Output:

    And there you go!

    Wrapping up

    Creating DataFrames in pandas may appear advanced, but it surely really isn’t. Most often, you’ll in all probability be studying CSV information anyway. So don’t sweat it. I hope you discovered this text useful. Would love to listen to your ideas within the feedback. Thanks for studying!

    Wanna join? Be at liberty to say hello on these platforms

    LinkedIn

    Twitter

    YouTube

    Medium



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleJavascript Fatigue: HTMX is all you need to build ChatGPT — Part 1
    Next Article The State of AI: How war will be changed forever
    ProfitlyAI
    • Website

    Related Posts

    Artificial Intelligence

    MIT scientists debut a generative AI model that could create molecules addressing hard-to-treat diseases | MIT News

    November 25, 2025
    Artificial Intelligence

    Why CrewAI’s Manager-Worker Architecture Fails — and How to Fix It

    November 25, 2025
    Artificial Intelligence

    How to Implement Three Use Cases for the New Calendar-Based Time Intelligence

    November 25, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    OpenAI lanserar GPT-5 – AI nyheter

    August 7, 2025

    How to Build Smarter AI Automations with Andy Crestodina [MAICON 2025 Speaker Series]

    July 31, 2025

    Dia en ny öppen källkods text till tal-modell

    April 24, 2025

    Boost 2-Bit LLM Accuracy with EoRA

    May 15, 2025

    Are We Watching More Ads Than Content? Analyzing YouTube Sponsor Data

    April 4, 2025
    Categories
    • AI Technology
    • AI Tools & Technologies
    • Artificial Intelligence
    • Latest AI Innovations
    • Latest News
    Most Popular

    Are You Sure Your Posterior Makes Sense?

    April 12, 2025

    AI Will Cut Jobs, Your Brain on ChatGPT, Possible OpenAI-Microsoft Breakup & Veo 3 IP Issues

    June 24, 2025

    How the Marketing AI Institute Became One of America’s Fastest-Growing Companies

    August 12, 2025
    Our Picks

    MIT scientists debut a generative AI model that could create molecules addressing hard-to-treat diseases | MIT News

    November 25, 2025

    Why CrewAI’s Manager-Worker Architecture Fails — and How to Fix It

    November 25, 2025

    How to Implement Three Use Cases for the New Calendar-Based Time Intelligence

    November 25, 2025
    Categories
    • AI Technology
    • AI Tools & Technologies
    • Artificial Intelligence
    • Latest AI Innovations
    • Latest News
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2025 ProfitlyAI All Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.